Statistika adalah cabang ilmu yang mempelajari tentang bagaimana mengumpulkan, menganalisis dan menginterpretasikan data. Atau dengan kata lain, statistika menjadi semacam alat dalam melakukan suatu riset empiris.
Dalam menganalisis data, para ilmuwan menggambarkan persepsinya tentang suatu fenomena. Deskripsi yang sudah stabil tentang suatu fenomena seringkali mampu menjelaskan suatu teori. (Walaupun demikian, orang dapat saja berargumentasi bahwa ilmu biasanya menggambarkan bagaimana sesuatu itu terjadi, bukannya mengapa). Penemuan teori baru merupakan suatu proses kreatif yang didapat dengan cara mereka ulang informasi pada teori yang telah ada atau mengesktrak informasi yang diperoleh dari dunia nyata. Pendekatan awal yang umumnya digunakan untuk menjelaskan suatu fenomena adalah statistika deskriptif.
Asal Kata Statistik
Statistik
Bahasa Latin = Status
Statistik berasal dari kata state/status yang berarti Negara, karena beberapa keterangan-keterangan yang dibutuhkan dan berguna bagi Negara.
Bentuk Kata Statistik
a. Plural
Statistik diartikan sebagai kumpulan fakta-fakta yang berupa angka-angka (data kuantitatif) yang menunjukkan serangkaian kejadian baik yang belum tersusun dalam bentuk table maupun yang sudah berbentuk table.
Contoh : Data hasil penjualan Toko “A” dari tahun ke tahun.
Data jumlah penduduk suatu daerah “X”.
b. Singular
Statistik diartikan sebagai teknik atau metode guna mengumpulkan, mengolah, menyajikan, menganalisis data kuantitatif sehingga data tersebut bisa berbicara
Manfaat dan Kegunaan Statistik
Statistik dapat digunakan sebagai alat (Riduwan dan Sunarto, 2007) :
Komunikasi. Adalah sebagai penghubungan beberapa pihak yang menghasilkan data statistic atau berupa analisis statistic sehingga beberapa pihak tersebut akan dapat mengambil keputusan melalui informasi tersebut.
Deskripsi. Merupakan penyajian data dan mengilustrasikan data, misalnya mengukur tingkat kelulusan siswa, laporan keuangan, tingkat inflasi, jumlah penduduk, dan seterusnya
Regresi. Adalah meramalkan pengaruh data yang satu dengan data yang lainnya dan untuk menghadapi gejala-gejala yang akan datang
Korelasi. Untuk mencari kuatnya atau besarnya hubungan data dalam suatu peneltian
Komparasi yaitu membandingkan data dua kelompok atau lebih.
Ch. 1 Statistika Deskriptif
Statistika deskriptif adalah tehnik yang digunakan untuk mensarikan data dan menampilkannya dalam bentuk yang dapat dimengerti oleh setiap orang. Hal ini melibatkan proses kuantifikasi dari penemuan suatu fenomena. Berbagai statistik sederhana, seperti rata-rata, dihitung dan ditampilkan dalam bentuk tabel dan grafik. Statistika deskriptif dapat memberikan pengetahuan yang signifikan pada kejadian fenomena yang belum dikenal dan mendeteksi keterkaitan yang ada di dalamnya. Tetapi dapatkah statistika deskriptif memberikan hasil yang bisa diterima secara ilmiah? Statistik merupakan suatu alat pengukuran yang berhubungan dengan keragaman pada karakteristik objek-objek yang berbeda.
Objek yang belum dikenal tidaklah mewakili populasi objek yang memiliki “quantifiabel feature” melalui penyelidikan. Namun demikian, keragaman bisa menjadi hasil dari keberagaman yang lainnya (karena acak atau terkontrol). Pada ilmu fisika, yang sangat berkaitan dengan ekstraksi dan formulasi persamaan matematik tidak menyisakan banyak tempat untuk fluktuasi acak. Pada ilmu statistika, fluktuasi seperti itu dapat dijadikan model. Hubungan relasi statistik selanjutnya merupakan hubungan relasi yang menerangkan suatu proporsi perubahan stokastik yang pasti.
Ch. 2 Skala Pengukuran
1. Skala nominalAdalah skala yang semata-mata hanya untuk memberikan indeks, atau nama saja dan tidak mempunyai makna yang lain.
2. Skala ordinal
Adalah skala ranking, di mana kode yang diberikan memberikan urutan tertentu pada data, tetapi tidak menunjukkan selisih yang sama dan tidak ada nol mutlak.
3. Skala interval
Skala pengukuran yang mempunyai selisih sama antara satu pengukuran dengan pengukuran yang lain, tetapi tidak memiliki nilai nol mutlak.
4. Skala rasio
Adalah skala pengukuran yang paling tinggi di mana selisih tiap pengukuran adalah sama dan mempunyai nilai nol mutlak.
Ch. 3 Distribusi Frekuensi dan Grafik
1. Pengertian
Adalah pengelompokkan data ke dalam beberapa kategori yang menunjukkan banyaknya data dalam setiap kategori, dan setiap data tidak dapat dimasukkan ke dalam dua atau lebih kategori. Distribusi frekuensi adalah susunan data dalam bentuk tunggal atau kelompok menurut kelas-kelas tertentu dalam sebuah daftar.
2. Jenis-jenis distribusi frekuensi
A. Distribusi frekuensi tunggal
Distribusi frekuensi tunggal merupakan urutan tiap-tiap skor, satuan-satuan unit dalam suatu data tertentu.
B. Distribusi frekuensi kelompok
Digunakan untuk data yang banyak jumlahnya. Karena data tidak lagi setiap skor tetapi dikelompokkan pada interval tertentu.
3. Distribusi frekuensi kumulatif dan proporsi
a. Distribusi frekuensi tunggal
Kumulasi frekuensi adalah jumlah frekuensi untuk sejumlah data, baik secara keseluruhan atau sebagian. Bentuk kumulasi frekuensi ada dua yaitu kumulasi ke bawah (kumulasi dari data terkecil secara bertahap ke data yang terbesar) dan kukulasi ke atas (kumulasi yang dihitung mulai dari data terbesar secara bertahap ke data yang terkecil).
b. Distribusi frekuensi proporsi
Proporsi data diperoleh dari pembagian frekuensi suatu data dengan frekuensi total. Proporsi dapat berbentuk pecahan diantara 0 sampai 1 dan juga berbentuk persentase dari 0% sampai 100%.
4. Langkah- langkah dari distribusi frekuensi
1. Mengurutkan data dari yang terkecil ke yang terbesar atau sebaliknya. Tujuannya untuk memudahkan dalam melakukan penghitungan pada langkah ketiga.
2. Membuat kategori atau kelas yaitu data dimasukkan ke dalam kategori yang sama, sehingga data dalam satu kategori mempunyai karakteristik yang sama.
Cara untuk membuat kategori yang baik :
1. Menentukan banyaknya kategori atau kelas sesuai dengan kebutuhan.
Rumus Sturges
Jumlah kategori (k)= 1+3,322 Log n
2. Menentukan interval kategori. Interval kategori atau kelas adalah batas bawah dan batas atas dari suatu kategori.
Interval kelas = Nilai terbesar - Nilai terkecil Jumlah kelas
3. Melakukan penturusan atau pentabulasian dari data mentah yang sudah diurutkan ke dalam kelas interval yang sudah dihasilkan pada langkah ketiga.
Distribusi frekuensi relative adalah frekuensi setiap kelas dibandingkan dengan frekuensi total.
5. Penyajian data / Grafik
Data yang sudah dikelompokkan dalam bentuk table distribusi frekuensi dapat disajikan dalam bentuk grafik supaya menjadi lebih menarik dan informative.
· Batas kelas dalam suatu interval kelas atau kategori terdiri dua macam yaitu batas kelas bawah (lower class limit) yaitu nilai terendah dalam suatu interval kelas dan batas kelas atas ( upper class limit) yaitu nilai tertinggi dalam suatu interval kelas.
· Nilai tengah kelas adalah tanda atau penciri dari suatu interval kelas dan merupakan suatu angka yang dapat dianggap mewakili suatu interval kelas. Nilai tengah kelas letaknya berada ditengah-tengah pada setiap interval kelas. Nilai tengah kelas diperoleh dengan menjumlahkan batas bawah dan batas atas kelas kemudian dibagi 2.
· Nilai tepi kelas (class boundaries) adalah nilai batas antara kelas (border) yang memisahkan nilai antara kelas satu dengan kelas lainnya. Nilai tepi kelas diperoleh dari penjumlahan nilai atas kelas dengan nilai bawah kelas diatasnya dan kemudian dibagi dua. Nilai tepi kelas ada dua macam nilai tepi kelas bawah (lower class boundaries) dan nilai tepi kelas atas (upper class boundaries).
· Frekuensi kumulatif menunjukan seberapa besar jumlah frekuensi pada tingkat kelas tertentu. Frekuensi kumulatif diperoleh dengan menjumlahkan frekuensi pasa kelas tertentu dengan frekuensi kelas selanjutnya.
Frekuensi kumulatif dibedakan dalam dua bentuk yaitu frekuensi kumulatif kurang dari yang merupakan penjumlahan dari mulai frekuensi kelas terendah sampai kelas tertinggi dan jumlah akhirnya merupakan jumlah data (n). frekuensi kumulatif lebih dari merupakan pengurangan dari jumlah data (n) dengan frekuensi setiap kelas dimulai dari kelas terendah dan jumlah akhirnya adalah nol.
A. Grafik Histogram
Histogram adalah grafik berbentuk batang yang digunakan untuk menggambarkan bentuk distribusi frekuensi. Histogram merupakan diagram balok, karena frekuensi disajikan dalam bentuk balok. Histogram menghubungkan antara tepi kelas interval pada sumbu horizontal (X) dan frekuensi setiap kelas pada sumbu vertical (Y).
B. Polygon
Polygon hampir sama dengan histogram , perbedaanya histogram menggunakan balok, sedangkan polygon menggunakan garis yang menghubungkan titik-titik yang merupakan koordinat antara niali tengah kelas dengan jumlah frekuensi pada kelas tersebut. Titik tengah kelas merupakan representasi dari karakter kelas dan nilai tengah ini menggantikan posisi interval kelas pada diagram histogram.
Pada grafik polygon , sumbu horizontal merupakan nilai tengah kelas dan sumbu vertical adalah jumlah frekuensi setiap kelas.
C. Kurva ogive
Kurva ogive merupakan diagram garis yang menunjukkan kombinasi antara interval kelas dengan frekuensi kumulatif. Kurva ogif menunjukkan frekuensi kumulatif pada setiap tingkat atau kategori. Sumbu horizontal pada kurva ogif menunjukkan tepi interval kelas dan sumbu vertical menunjukkan frekuensi kumulatif. Kurva ogif memudahkan kita untuk melihat frekuensi kumulatif baik dalam bentuk nilai absolute maupun nilai relative pada tingkat atau interval tertentu.
Tidak ada komentar:
Posting Komentar